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The Macroscopic
Quantum Model

5.1 INTRODUCTION

As demonstrated in Chapters 2, 3, and 4, a great deal of knowledge about
superconductivity can be obtained from the classical model. For example, we
not only were able to solve a number of practical engineering problems but
also could discern how additional complications, like anisotropy, affected these
results. Nevertheless, the model is simply posited to agree with fundamental
observations: perfect dc conductivity, the Meissner effect, and the thermody-
namic nature of the superconducting transition. In other words, the classical
model does not show us how these phenomena are related to each other.

Fritz London had realized this in 1935 and by 1948 was able to show that
the London equations could be derived from more fundamental ideas if the su-
perelectron fluid were treated as a quantum mechanical entity. This development
occurred because London realized that

Superconductivity is an inherently quantum mechanical phenomenon that
mantifests itself on macroscopic scales.

This 1s a profound statement. Although quantum mechanics has supplanted
Newtonian mechanics as a more appropriate physical theory, we know that
over length scales larger than atomic dimensions the classical laws are usually
a valid approximation and often more tractable. Superconductivity, however, is
like the coherent light emitted from a laser: there simply 1s no way to account for
the phenomenon under classical physics alone. Indeed, it is precisely because
superconductivity 1s a macroscopic quantum phenomenon that we observe the
“unusual” properties so easily.

We have been able to avoid using quantum mechanics in our models thus
far because we have carefully chosen which problems to analyze. This does
not mmply that only a few select engineering scenarios can be considered by
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the London equations; rather we must be careful to include in our models the
other properties of superconductors that have no plausibie classical explanation.
By only considering superconductors in a classical framework, we necessarily
leave out aspects that can only be properly treated using quantum mechanics.
Our goal, then, is to develop a model of superconductivity that not only re-
produces the success of the London equations, but also is consistent with these
macroscopic quantum nature of the phenomenon.

To formulate such a model it is, of course, necessary to have a working
knowledge of quantum mechanics itself. Consequently, we shall devote a large
amount of this chapter to examining those fundamental quantum mechanical
issues that have a direct relevance to superconductivity. It should be noted that
one of the early goals of quantum mechanics was to provide a theoretical ba-
s1s for the Rutherford model of a stable atom, which consisted of a positively
charged nucleus and negatively charged orbiting electrons. Classically, the or-
biting electrons would be accelerating radially as a result of the centripetal
forces and, as a result, emit electromagnetic radiation. Thus, under Newtoman
mechanics, the electrons would lose energy and eventually spiral into the nu-
cleus. Historically, the explanation as to why this physical model of the atom
was stable was one of the first tests of quantum theory. A traditional discussion
of quantum physics would be guided with this particular example in mind. Our
quantum phenomena of interest are different, however, and we need not feel ob-
ligated to follow this usual path. Instead, we will develop some of the concepts
of quantum mechanics with the implied objective of modeling supercurrents.
This was not how things happened historically, but such an approach will keep
us focused on superconductivity.

We therefore mtroduce the most basic notion of quantum physics, the wave-
particle duality of nature, in Section 5.2 and proceed directly to a description
of how a single quantum particle moves in Section 5.3. Once we have an
understanding of how a single particle moves, we can generalize to how an
ensemble moves. The net motion of this ensemble is the supercurrent and it
is described in detail in Section 5.4. At this point, we can start to examine
superconducting behavior that 1s manifestly quantum mechanical. Quantization
of flux, the topic of Section 5.5, is a natural point to begin such a discussion.

5.2 SCHRODINGER’S EQUATION

In 1900 the frequency distribution of the electromagnetic energy radiated by a
body at a given temperature was not well understood. In his investigations of
this issue, Max Planck found it necessary to abandon the classical notion that
an arbitrary amount of energy could be radiated by the body. Instead, Planck
obtammed the correct frequency distribution by assuming that the body and the
electromagnetic field could only exchange energy in certain discrete amounts.
This simple, though radical, assumption resulted in the first theory of thermal
radiation consistent with all available experimental data. At the time, however,
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Planck was uncomfortable with such a departure from classical physics and
viewed his solution more as a mathematical trick.

Albert Einstein, aware of Planck’s work, saw something far more funda-
mental. In 1905 Einstein postulated that all electromagnetic radiation could be
viewed as a collection of particles known as photons. This is an extreme depar-
ture from the classical notion that radiation is described by an electromagnetic
wave. A single photon of a known frequency would thus represent the smallest
discrete amount of energy that could be radiated by the heated body. From
Einstein’s point of view, Planck had not merely proposed a mathematical trick,
but in fact uncovered a fundamental characteristic of nature.

In 1924 Louis de Broglie realized that if what had been classically consid-
ered a wave could be described in terms of particles, then it is reasonable to
expect that what had been classically considered a particle could be described
as a wave. He thus proposed the notion of matter waves in his doctoral thesis.
Although this 1s a concept totally outside normal experience, it is analogous to
using ray optics when studying light. In spite of the fact that we know light
is classically wavelike in nature, when working with lenses and mirrors whose
dimensions are much greater than the optical wavelength, it is convenient and
accurate to neglect the wavelike aspects of light altogether. In this way, we can
view Newtonian classical mechanics as a ray optic analog to the more complete
picture of de Broglie’s matter waves.

Today, there 15 overwhelming experimental evidence for this wave-particle
duality in nature. In fact, when quantum mechanics is written in a form that
is consistent with Einstemn’s theory of relativity, the result is one of the most
accurate physical theories ever formulated. That the theory predicts things that
are occasionally intuitively uncomfortable 1s a result of our experience based
on the macroscopic world, where the quantum effects are often small. In these
instances, the familiar classical laws of physics, which are a limit of the quantum
theory, hold. On the other hand, we sometimes come across phenomena, like
superconductivity, where the effects of the wave-particle duality are apparent
on the macroscopic scale.

Before we can discuss quantum phenomena quantitatively, however, we
must first find the laws that describe the dynamical evolution of a quantum
system over space and time. Fortunately in our applications of quantum theory
relativistic effects are negligible. We therefore seek the quantum mechanical
equivalent of Newton’s law. We begin by examining the Einstein-de Broglie
relations:

E = hw (5.1)
and

p = ik (5.2)

Equation 5.1, which was alluded to in Section 3.4, relates the total energy of a
quantum particle, £, to the frequency of oscillation, w. Equation 5.2 relates the
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momentum of the quantum particle, p, to the wavevector, k. Notice that this
is a vector equation and the magnitude of k 1s related to the matter wavelength
in the usual way:
27

k| = =. 5.3

Kl =% 5.3)
The constant of proportionality in both these equations 1s related to Planck’s
constant, h, by

h
=5 5.4
where 7 = 6.6262 x 10 =3 J-sec. It is because Planck’s constant is so small
that we tend not to notice quantum effects in the macroscopic world.

The Einstein-de Broglie relations describe borh the wavelike and the parti-
clelike behavior of quantum systems. In fact, it becomes rather meaningless to
make a classical distinction between the two types of behavior. When examining
a quantum system, neither type of behavior provides, by itself, a sufficiently
accurate description under all circumstances. It is only to help our intuition that
we say that a particular experiment is best described by wavelike or particlelike
behavior.

To illustrate how the wave-particle duality picture is useful in discerning
the physics of a system, consider the electron microscope. This is a device that
provides high-resolution pictures at high magnification by exposing the sample
to a beam of electrons. To understand the microscope’s operating principles,
we could concentrate on the particlelike behavior of the electrons. In this case
we would discuss how each electron 1s scattered by its interactions with the sam-
ple and how the net result of the large number of electrons scattering in some
probabilistic fashion will ultimately produce an image. It is easier, however, to
picture the set of electrons as a series of waves and thus invoke our intuition
about the operating principle of optical microscopes. An electron microscope
can get better resolution at high magnification than an ordinary optical micro-
scope because the wavelength associated with a beam of ¢lectrons can be made
much smaller than that of visible light. Typically the beam of electrons has
been accelerated to a kinetic energy of 10keV. (Recall that 1 eV is equivalent
to 1.6 x 10~'% J.) From Equation 5.2 we see that the wavelength associated
with this beam is approximately 0.12 A, which is far smaller than any wave-
length in the visible light regime (~ 4000-7000 A). As a result, an electron
microscope is able to provide better resolution of smaller objects than an optical
microscope. In this example, then, we see that concentrating on the wavelike
nature of the particles provides a more intuitive way of sorting out the relevant
physics of the system.

With these ideas in mind, let us find an equation of motion for the simplest
quantum system: a free quantum particle; that 1s, a particle not subjected to any
external force. We wish this equation to describe the system’s evolution in space
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and time (r.r), but we see from the Einstein-de Broglie relations that it is more
natural to describe the evolution in wavevector space and frequency (k,w). Asa
result, our procedure is as follows. We will first formulate the classical problem
in terms of physical quantities that are also natural in quantum mechanics. We
see from Equations 5.1 and 5.2 that these natural quantities are £ and p. We
then transform the classical expression into a quantum mechanical one using the
Einstein-de Broglie relations. Notice that purely quantum mechanical effects will
never show up in a classical equation of motion. Thus we have no guarantee that
our procedure will yield a correct quantum mechanical equation of motion; we
can only determine the validity of the resulting expression through experiment.

We begin by concentrating on the energy of the free particle, £. From
classical mechanics, we know that £ of a free particle is just its kinetic energy

E::%m(v*v), (5.5
where v is the velocity of the particle and m is its mass. Unfortunately, this
relation, as written, 1s not useful to us because the Einstein-de Broghe relations
do not focus on the velocity of a particle. In other words, we must rewrite the
right side of Equation 5.5 in terms of p.

Recall that in classical mechanics the motion of a particle 1s completely
specified when we know its initial position and velocity, or alternatively, its
mnitial position and momentum. In other words, classically we can choose our
independent variables to be (r, v) or (r, p). Indeed, by comparing the classical
equation of motion written in terms (r.v) to that written in terms of (r,p),
we can find the relationship between p and v. Specifically, since no forces are
exerted on the free particle by definition, conservation of momentum requires

dp
& =0 (5.6)

Alternatively, we could describe the motion of the particle using Newton’s law:

m—— = 0. 5.7)

p = mv 5.8)

as our desired expression relating the momentum p with the kinematic (or
mechanical) momentum mv.

Rewriting the energy of the free particle in terms of the energy and mo-
mentum yields

g=PP (5.9)
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Assuming that this classical expression 1s also valid under quantum mechanics,
it transforms under the Einstein-de Broglie relations to be

2
y-4

h

hw = > (k-k). (5.10)

Equation 5.10 relates w to k and so this must be the dispersion relation for

the matter waves. To obtain the governing relation describing the motion of the

quantum particle in terms of space and time, we merely need to work backward

from the dispersion relation. Let us assume that our quantum particle, which we

think of as localized in space, is a superposition of a whole spectrum of matter

waves of various amplitudes. Just as in electromagnetism, we can therefore
discern the behavior of the system by studying individual plane waves.

Suppose the uniform plane wave

~

b = ellkr=un (5.11)

satisfies the dispersion relation. (Notice that in writing this expression, we have
changed notation and now define i to be v/—1. Unfortunately, harmonic anal-
ysis in physics is done under this convention rather than using j, as is done in
engineering. At this point, since we are in the domain of physics, it is necessary
to make this switch in notation so that the resulting equations will match those
found mn physics journals and books. The connection between the two con-
ventions is fortunately simple: to go back to the engineering notation, simply
replace i with —j.) As discussed in Section 4.2, when analyzing dispersion re-
lations of plane waves, the algebraic quantities involving k and w translate into
terms proportional to space and time derivates, respectively. In other words,
the dispersion relation for the free quantum particle results from the differential
equation

ih o ah = — =P, 5.12)
n

as can be verified by direct substitution. This expression, then, is our desired
relation describing the evolution of the free quantum particle in space and time.

Equation 5. 12 was first proposed by Erwin Schrédinger in 1926, and is thus
called Schrodinger’s equation. As previously mentioned, we have no a priori
reason to guarantee it is the correct governing equation. There is, however,
extensive experimental evidence that this is indeed the correct expression for
this system. It should be noted that we have not in any way derived Schrodinger’s
equation. This should not be surprising since it is never possible to “derive” a
law of nature; after all, Newton did not mathematically derive the classical
equations of motion. What we have done, however, is to make a plausibility
argument to show the connection between quantum and Newtomian mechanics.

Let us now use a similar argument to develop Schrodinger’s equation for
a quantum particle under the influence of a potential field that is a function of
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position only, V(r). Classically, the energy of the particle is described by the
sum of the particle’s kinetic and potential energies:

£ = ~21—m (v-v) + V(r). (5.13)
As before, we need to first reexpress this classical equation in terms of the
momentum rather than the velocity. We therefore must find a relation between
v and p, similar to Equation 5.6 in the previous example.
Since the potential field 1s not a function of time, the total energy of the
particle 1s conserved:

d&
a7 = 0, 5.14)

or specifically,

dv d

d%' (%m (v-v) + V(r)) =mv -+ EV(I‘) = (. (5.1%5)
Recall from the chain rule of differentiation that
L vy = L) + (v vyv), 5.16
dt ot
so Equation 5.15 can expressed as
V- (m%?v + VV) =0, (5.17)

since the potential field 1s independent of time. Since this expression holds for
any value of v, we see that

dv

m?i}" - ""VV, (5'18)

which is simply Newton’s law of motion. The right side of this expression 1s
therefore the force that V' exerts on the particle. Since we know from classical
mechanics that a force 1s proportional to a time rate of change of momentum,
we see that the left side of Equation 5.18 can be written

dp

= = YV . 19

dt v 5-19)
Notice that this expression i1s particularly interesting since it expresses New-

ton’s law only in terms of quantities that are used in writing the energy of the

system. Indeed, when the equation of motion can be written 1n this form, the

term in the time derivative is the canonical momentum, by definition. In this
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case, the canonical momentum is identically equal to the kinematic momen-
tum: p = mv. In addition, the term in the spatial derivative is the generalized
potential of the particle, which in this case is simply the applied potential, V.

Having identified the canonical momentum and generalized potential, we
find that for this particular example, the energy of the system is

|
&= o (p-p) + Vr), (5.20)
by direct substitution. As before, we assume that this classical expression is valid

under quantum mechanics. From the Einstein-de Broglie relations, it therefore
becomes

h2
ho = 5 (k-K) + V(r). (5.21)

Unfortunately, we cannot treat this expression as a dispersion relation. The
reason is that a true dispersion relation is a function of k and w only and we
see that our expression is dependent on r as a result of the applied potential.

From our previous example, however, we know that Schrodinger’s equa-
tion for a free particle describes the motion of plane waves in r-f space. There
is no reason to believe that things should be any different when there is an ex-
ternal potential in the problem. As a result, we again assume that Schrédinger’s
equation is linear and so it is possible to build arbitrary functions by adding
together uniform plane waves. We therefore concentrate on how Equation 5.21
describes the space-time evolution of the plane wave given in Equation 5.11.
If k and w are once again replaced with terms proportional to space and time
derivatives, we find that Schrodinger’s equation for this case is

L O R, .
ih ?)T = — -2~m-V2'¢f + V(rjy. (5.22)

As before, this result may be verified by direct substitution.
Let us summarize the steps for formulating the Schrddinger equation from
a classical expression:

1. Write the classical equation of motion in terms of the canonical momentum,
p, and generalized potential, V:

dp

rran vV. (5.23)

Indeed, this form identifies the precise expressions for p and V.
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2. Use these quantities to write the energy of the system:

=Py (5.24)
2m
3. Transform the classical expression into a quantum mechanical one by ap-
pealing to the Einstein-de Broglie relations. Since Schrodinger’s equation
is linear, these transformations are

E = hw —= ik a7 (5.25)
and
p = Ak = —{AV . (5.26)

These rules are consistent with our two specific examples. More importantly,
they can be rigorously derived from a more advanced formulation of classical
mechanics. Consequently, we can apply these rules to more general situations.

For example, we need not restrict the applied potential to be conserva-
tive (that 1s, a function independent of time). In fact, Equation 5.22 may be
generalized to

Yo 52
in 9¥

o = iwmwvzy’} + V{r.t)y. (5.27)
This expression is the correct (experimentally verified) general form of Schro-
dinger’s equation. Although we have written a general equation capable of
describing the space and time evolution of a system exhibiting wave-particle
duality, we are left with the question of the physical interpretation of the function
¥ (r,t). This is the topic of Section 5.3.

5.3 PROBABILITY CURRENTS

In Section 5.2 we saw how Schrdédinger’s equation governs the evolution of the
wavefunction 1 in space and time. This wavefunction i1s somehow descriptive
of the quantum system but the connection is not obvious. Indeed, at first glance
we might think of the wavefunction as a quantum field, similar to those fields
encountered in electromagnetism. This is not the case however. A close look
at Schrodinger’s equation reveals that ) cannot be a real scalar function as a
result of the factor of / in the expression. This factor represents a phase shift
and means that if ) is a scalar function, it must have both real and imaginary
parts. For a plane wave, this implies

¢ . dgei&ﬁ—wt} ' (5.28)
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In contrast, electromagnetic fields may be represented as either the real or
imaginary parts of a complex expression. For example, the magnetic field of
an electromagnetic wave can be written

H = Re {ﬁef(k‘ """w”} . (5.29)

Thus, we find that the quantum wavefunction is necessarily a complex quan-
tity. Although this poses no problems with the mathematics of our development,
recall that ¥ was simply thought of as the amplitude of a plane wave. We now
see from Schrédinger’s equation that the absolute phase of this quantity cannor
be arbitrary. This is very peculiar; normally when we study plane waves we
do not discuss the absolute phase since it does not influence the physics of the
problem. Schrédinger’s equation, however, seems to suggest that the phase is
not arbitrary but rather a measurable quantity of physical significance!

To preserve the intuitive notion that the absolute phase of a plane wave
should nor influence the overall physics of a system, Max Born hypothesized
in 1927 that the square of the magnitude of the wave function 1> was equal to the
probability of a quantum mechanical particle to be at the location r at time ¢.
Stated mathematically we have

o(r, 1) = [o(r, ) =" (e,09(r.1), (5.30)

where p is the function describing the probability of the location of the particle
in space at a certain time. We thus see that the absolute phase of the wave-
function no longer has any experimental significance. In addition, we find that
quantum mechanics allows us to predict only the probability of the outcome of
an experiment. This is a fundamental difference between quantum mechanics
and Newtonian mechanics, which is a deterministic theory. Furthermore, since
the particle must exist somewhere in space, we know from Equation 5.30 that
©» must also satisfy the normalization condition:

/dv P (r. (e, ) =1 (5.31)

at all times.

As a result of Born’s interpretation of the wavefunction, it is useful to
directly determine how ¢ evolves in space and time. Let us therefore derive the
governing equation for g from Schrodinger’s equation. We begin by multiplying
Equation 5.27 with the complex conjugate of

; Ik 87’*'15 . ﬁz !k 2 ! ‘o
ihy VT %”@) Vo + V™. (5.32)
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From this expression, we subtract the complex conjugate of Schrodinger’s equa-
tion multiplied by

L, oY hz 2
— (R FTal v VYT + Vg™ {5.33)
to obtain the expression
0 f* }iz 1 2 : ; 2 fF
th E( Yt) = — Z_m (?}7 Ve — Ve ) . 5.349)

Notice that V must be a real quantity since it is the potential associated with
the externally applied force. Because any scalar function v and vector field C
obey the vector identity

V - (74C)=79V -C + C.Vy (5.35)
and V? = V . V, we can rewrite Equation 5.34 as

0 ton Tk hz 7 ¥ ; ; ¥
ih 5 (po") = ™ (V- (&"Vy — ¥VyT)) . (5.36)
Recognizing the left side of this expression as the time evolution of the proba-
bility p(r,¢), we find

Jp

_5}_ = -V Jg:}s (5.37)

where the probability current is defined as
J, = ﬁ( Vi V') = R "’*hV" (5.38)
o =5 VY — vVy¥™) = Re < VY .

Equation 5.37 is our desired relation describing the evolution of the prob-
ability of a quantum particle being found at a certain point in space at a certain
time. In fact, whereas the normalization condition, Equation 5.31, gave us a
global constraint on , Equation 5.37 gives us a local constraint. In other
words, the probability of the quantum particle at a certain point cannot change
instantaneously, rather it must “flow” in a continuous fashion between two lo-
cations. Consequently, it is convenient to define the probability current to help
our intuition and make Equation 5.37 look like a “conservation of probability”
statement.

Although this relation does bear a great deal of resemblance to the famil-
iar conservation of charge equation from electromagnetic field theory (compare
with Equation 2.33), we must remember that the similarity is mathematical
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only. Whereas the electrical current is a real, physical, measurable quantity, the
probability current is a theoretical construct. It is not possible to experimentally
measure J, for a single particle directly.

Equation 5.38 describes the probabilistic flow of a quantum particle that
1s subjected to forces that vary in space and time only. It does not, however,
describe the situation of central interest for us: that of a charged quantum
particle in an electromagnetic field. This is because, by its very nature, an
electromagnetic field subjects the charged particle to forces that are dependent
on the particle’s motion. As a result, our previous analysis is not complete. To
find J, for this scenario, it is necessary to first find the appropriate form of
Schrédinger’s equation.

In Section 5.2, we saw that if we could express the governing classical
equation of motion in the general form

d
ar (canonical momentum) = —V {externally applied potential} {5.39)

we could immediately identify the canonical momentum p and external potential
V, which are used in writing the total energy of the system. This formalism is
particularly useful in the present case since the electromagnetic field represents
a nonconservative potential making it difficult to formulate energy relationships
intuitively. We therefore begin by recognizing that the classical equation of
motion for a particle of charge ¢ in an electromagnetic field is Lorentz’s law:

m%}i ~g(E+(vxB)). (5.40)

QOur first goal in obtaining Schrodinger’s equation for this problem is to rewrite
Equation 5.40 into the form suggested by Equation 5.39.

To accomplish this task, we express the field quantities E and H in terms
of potentials. Recall from Gauss’s magnetic law that the flux density B can
always be written as

B=VxA, (5.41)
which follows directly from the vector identity
V- (VxC)=0. (5.42)

In Equation 5.41 A 1s a vector potential and can be used to write Faraday’s
law as

7x (5+22) <0 59
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Since the curl of the gradient of any single-valued scalar field is zero, Equa-
tion 5.43 is equivalent to the statement

JA
E = - ar V¢, (5.44)

where ¢ is a scalar potential.
Lorentz’s law in terms of these potentials is therefore

dv JdA
mgi—:wq(Vgéﬁ—@?wvx(VxA))‘ (5.45)

We now wish to make the form of Equation 5.45 identical to that given in
Equation 5.39. Consequently, we need to group all the time derivatives together.
From the chain rule of differentiation

dA DA

Equation 5.45 becomes

j{ (mv+qA)=-q[Vod - (v V)A - vx(VxA). (5.47)

From this grouping, Equation 5.47 is close to our desired form and we
strongly suspect that the canonical momentum is given by

p=mv+gA. (5.48)
To verify this is true, however, we must be able to express the right-hand side

of Equation 5.47 as the gradient of a scalar function. We thus rewrite it in terms
of the canonical momentum:

dp

. 9q q°
5 -qVo + — (p-VIA - — (A-V)A

+;‘§px(vXA) ~»%A><(V><A). (5.49)
Using the vector identities
Cx(VxD)=V({C-D)~-(C-V)D~-(D -V)C-Dx (VxC) (5.50)
and

Cx (VxC)=3V(C-C) - (C-V)C, (5.51)
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we can rewrite Equation 5.49 as

dp _ q q°
P o+ ivp-a - Ly a

W%(A-V)pm%Ax(pr). (5.52)

At this point, recall that we are using the set of independently specified variables
(r,p) to describe the problem. As a result, the spatial derivative of the canonical
momentum is identically zero and thus, Equation 5.52 is equivalent to

dp q q’

- ~—~V(qc’>mp-A+Z?;A’A). (5.53)
This expression achieves our goal of writing Lorentz’s law in the generic form
of Equation 5.39.

Let us develop a physical understanding of Equation 5.53. Evidently, the
canonical momentum, given by Equation 5.48, is composed of two parts. The
first part, mv, is the kinematic momentum and, as we have seen, it is usually
associated with the momentum in elementary mechanics. The second part, gA,
is called the field momentum. This quantity is a direct result of the charge of the
particle; any change in the velocity of the particle produces an electromagnetic
field that must also be self-consistently considered. In a similar manner, the

generalized potential of the problem,

q g’
V—4¢",;P'A+2’*mA'A> {5.54)
is a function not only of space and time but also of the canonical momentum
as well. Consequently, the interaction of the externally applied field and the
induced current created by the motion of the charged particle is accounted for
in a self-consistent fashion. It 1s emphasized that these results are completely
classical in origin, they are not a result of any quantum mechanical effects.
As discussed in Section 5.2, the next step in obtaining Schrédinger’s equa-
tion is to use the expressions for p and V to write down the total energy of the
system, £. The result is

2
PP _9,. 9 A
£ = 7 (qu P A+ 2mA A) , (5.55)
which can be rewritten more compactly as
1 ,
E=5-(p—qA) (p—qA) + q¢. (5.56)

2m

Again, this expression is completely classical in origin.
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The last step is to translate this classical expression into a quantum me-
chanical one by using the transformations

. ., 0O
and
p = —ihV. (5.58)

Thus, we expect the guantum form of Lorentz’s law, as expressed by Equa-
tion 5.56, to be

k-a-—?m)lem éV« AZ":+ oY (5.59)
ih o =513 -q Y+ qoy, ;
and indeed this is the case. Proceeding now as in the beginning of this section,

we use Equation 5.59 to find the probability current of a charged quantum
particle in an electromagnetic field:

_ wf B q )
J, = Re{?_,-) (imv - ;;A) z_,.)} ) (5.60)

In obtaining this expression, it is important to realize that because ¢ represents
a portion of the applied potential field, it is necessarily a real quantity. Equa-
tion 5.60 is the relation we sought and in Section 5.4 we see how this expression
plays a central role in our quantum mechanical description of superconductivity.

5.4 MACROSCOPIC QUANTUM CURRENTS

As previously mentioned, one of the reasons for the development of quantum
mechanics was to explain the stability of the Rutherford model for the atom,
consisting of a positively charged nucleus and negatively charged orbiting elec-
trons. Historically, this model was postulated based on Rutherford’s experimen-
tal evidence of the size of an atom. Hence it was a case of developing a physical
theory needed to explain an already observed phenomenon. Classically, there
was no self-consistent explanation for how the electrons could orbit the nucleus
without decaying and having the atom collapse; quantum mechanics provided
the necessary framework.

In some sense, the situation for superconductors is similar. In Section 2.5,
we saw that our entire notion of superconductivity is built on the hypothesis
that the superelectrons do not scatter. This is an assumption that is formu-
lated to “explain” the already observed phenomena of zero dc resistance and the
Meissner effect. Although the results of this assumption are consistent with the



234 The Macroscopic Quantum Model

experimental evidence, it seems as arbitrary to postulate an infinite scattering
time for superelectrons as it does to postulate that the orbiting electrons in an
atom can be only in certain discrete radii from the nucleus {as Niels Bohr did
in 1913). Schrodinger’s equation provided a less arbitrary, and hence better,
description of the stable microscopic currents created by the orbiting electrons
and thus Fritz London hypothesized that the macroscopic currents in the super-
conductor might be similarly examined. This is the essence of the macroscopic
quantum model (MQM) for superconductivity.

Before beginning our study of this model, we should note that the MQM
formulation will not explain the microscopic origins of superconductivity any
better than the classical model. It is therefore natural to ask what are the ad-
vantages of the MQM. As we will see, the MQM not only encompasses the
classical constitutive relations but also extends them consistently into quantum
mechanics. Consequently, the MQM can be used effectively in many problems
of engineering interest. In addition, the MQM as postulated from quantum
mechanics is related to the Ginzburg-Landau model, discussed in Chapter 10,
which is developed along thermodynamic lines of reasoning. This is significant;
recall that with the classical model we treated the electromagnetic and thermo-
dynamic properties of the superconductor separately. In contrast, the MQM
necessarily unites these properties, it is therefore a better model. Finally, be-
cause the Ginzburg-Landau (and hence the MQM) model has been shown to
be a limiting result of the general microscopic (BCS) model of conventional
superconductivity, we are on a better theoretical foundation when discussing
the MQM as contrasted to the classical model. As it happens, we obtain all
these advantages with only a minimal extra effort in conceptualization.

The central hypothesis behind the MQM can be stated as follows:

There exists a macroscopic quantum wavefunction, ¥(r,¢), that describes
the behavior of the entire ensemble of superelectrons in the superconductor.

The motivation for such an assumption is that it places primary importance
on the notion that superconductivity is a coherent phenomenon between all
the superelectrons. By postulating the existence of ¥(r,t) to describe all the
superelectrons, we necessarily do not focus on the motions of a single carrier
of the supercurrent. This situation is analogous to that found in the quantum
description of electromagnetism. Because of wave-particle duality, we envision
a photon as a quantum particle of light. Nevertheless, when a large number
of these photons act in a coherent fashion (as in a laser), we know that the
entire collection of these quantum particles 1s adequately described in terms
of an electromagnetic field. As we shall see, the macroscopic wavefunction
is a fieldlike quantity that similarly describes a large collection of coherent
superelectrons.

Let us examine the consequences of postulating such a macroscopic wave-
function. We will initially confine our investigation to isotropic materials in
order to simplify our calculations. After this special case is understood, the
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consequences of the general anisotropic MQM, which is appropriate to use
when studying the behavior of anisotropic materials, will be more apparent.

The most straightforward way of proceeding is to compare ¥ with 2,
the wavefunction of the previous two sections that described a single quantum
particle. Just as ¢ is sufficient to describe the microscopic current associated
with an electron moving about an atomic nucleus, so too ¥ is sufficient to
describe the macroscopic supercurrent J; associated with the movement of the
entire ensemble of superelectrons.

We saw in Section 5.2 that the square of the magnitude of v:(r,) is inter-
preted as the probability that the single quantum particle would be located at r
at time f. As a result, the global constraint on the probability (or normalization
condition)

/a’v (e, )(e,t) =1 (5.61)

immediately followed. Physically, Equation 5.61 states that a single quantum
particle existed somewhere in space.

Following this line of reasoning, it is natural to assume that if ¥(r,z) is a
wavefunction describing the entire ensemble of superelectrons, it satisfies the
relation

/ dv ¥* (r,0)¥(r,1) = N*. (5.62)

Here N* is the total number of superelectrons the macroscopic wavefunction
describes. In other words, if all of space is searched, we are guaranteed of
finding all the superelectrons. It is tempting to thus interpret the integrand of
Equation 5.62 as the local density of superelectrons,

U (r,)¥{r.t) = n*(r,1). (5.63)

Since we envision the superelectrons as discrete entities, there must be a suf-
ficiently large number of them for our interpretation of the local density to
make sense. However, the very idea of a macroscopic wavefunction assumes a
great number of carriers of supercurrent from the start so that Equation 5.63
is self-consistent with the MQM,

This concern that enough superelectrons exist to allow the concept of a
local density to be meaningful is identical to that found in fluid mechanics.
Although we know that all fluids are made of discrete atoms or molecules,
it is convenient to describe a local aggregation of the discrete entities with a
continuous function; namely, the local fluid density. It is therefore not surprising
that the total collection of superelectrons are often referred to as a quantum
mechanical “charged superfluid.”

The analogy to fiuid mechanics is powerful in developing an intuition about
the MQM. Instead of a wavefunction describing events in terms of probabili-
ties for a single particle, we are now considering so many quantum particles that
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we have a wavefunction describing the actual location of some subset of this
ensemble. As a result, the local constraint on ¥ analogous to Equation 5.37 is
not a “flow of probability” but rather a “flow of particles™—which is nothing more
than a physical current. Following Equation 5.60, we therefore immediately
write the macroscopic quantum current density (or the supercurrent density as
we have previously called it) consistent with the MQM for a superconductor in
an electromagnetic field:

’ R q

Notice it is necessary to multiply the ensemble probability current, which de-
scribes a particle flux, by the charge of a superelectron to obtain an electrical
current density.

Equation 5.64 can be expressed in a more useful form. By virtue of our
assumptions for ¥(r,r}, it is consistent that the macroscopic wavefunction obeys
a Schrodingerlike equation for the ensemble in an electromagnetic field:

. 0 Lo (kg i "
ih En Y(r,7) = T (? V —g A(r,t)) U(r,1) + g*o(r,t) ¥(r,t). (5.65)

Intuitively, we can envision the form of this equation as equivalent to the sum of
the individual energies associated with each particle in a field, Equation 5.59.
Because of the phase factor i in Equation 5.65, the macroscopic wavefunction,
like the microscopic one, is a complex quantity. Therefore ¥(r, ¢} is of the form

U(r,1) = /n*(r.1)e "0, (5.66)

where f is a real function representing the phase of the complex number.
By writing the macroscopic wavefunction in this manner, we have guaranteed
that the square of its magnitude will yield the local density of superelectrons.
Substituting this expression into our relation describing the supercurrent, Equa-
tion 5.64, yields the supercurrent equation

Jg = g*n*(r.1) (nif;v&(rr) - :}I;; A(I’,t)) . (5.67)

Written in this form, the local velocity associated with the supercurrent, vy, is
identified as the quantity in parentheses

uz%W@ﬂrﬁMML (5.68)

Equation 5.67 is deceiving in its simplicity. It states that the supercurrent J;,
which can be experimentally measured, is related to only the phase of the
macroscopic wavefunction and the vector potential; neither of which can be
directly determined from experiment. After all, § is the absolute phase of a
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wavefunction, so it can have no direct physical meaning. Moreover, because
any single-valued scalar field, v, satisfies

V x(Vy)=0, (5.69)
we know that for an arbitrary scalar function x,
B=VxA=Vx(A+Vyx). (5.70)

Thus there exist an infinite number of vector potentials that will describe the
correct magnetic flux! As a result, although ¢ and A were initially introduced
as a matter of mathematical convenience, Equation 5.67 seems to imply that
these quantities are physically measurable, which is not the case.

To overcome this dilemma, we recognize that the relationship between
the phase of the wavefunction and the vector potential is nor arbitrary but,
in fact, fixed. In this way, we can measure the supercurrent and still not be
able to experimentally determine 6 and A. In other words, we demand that
Equation 5.67 be independent of the specific choice of the vector potential A.
The specific form of A is sometimes referred to as the gauge, and hence we
desire to make the supercurrent equation gauge invariant.

Mathematically, the concept of gauge invariance is straightforward. Sup-
pose we define a new vector potential A’ as

A=A +Vy. (5.71)

We see from Eqguation 5.70 that this new potential is an equally valid description
of the original magnetic flux density. In addition, the new vector potential must
also describe the original electric field. As a result, we define a new scalar
potential ¢’ so that the electric field is written

OA’

— - i
E= 51 Vo' . (5.72)

Comparing this expression to that written in terms of the original potentials
(Equation 5.44), we sce that the two scalar potentials are related by

L. Ox
¢__—;¢_5%. (5.73)

We can therefore separately specify the spatial and temporal dependences of the
arbitrary scalar function x to generate new sets of vector and scalar potentials
that still describe the original magnetic and electric fields.

We should be able to rewrite Equation 5.65 in terms of these new potentials:

.3 8 ¢ — i h *x A7 ? / > )} ’
gy W0 = 52 (1Y - AN ) W) + 0 0 (r)

i
(5.74)
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where W' (r,¢) is the new macroscopic wavefunction associated with the poten-
tials. As before, this new macroscopic wavefunction has the form

W (r,1) = /n*(r, )"0 (5.75)

Notice that the magnitude of ¥’ is the same as that of ¥ because both wave-
functions describe the same physical situation and hence both must describe the
same local density of superelectrons:

O (r, )W (r,t) = ¥ (r,0)¥(r,t) = n*(r,1). (5.76)

Moreover, when expressed in terms of the new variables, the supercurrent
J; =g*n” -—EWVQ’ ~ g:A’ (5.77)
] q m* m* Y *

must be the same as expressed in Equation 5.67 since it is an experimentally
measurable quantity. The only way for this condition to be satisfied is if

*

' =8+ %x, (5.78)
and thus the relationship between the two macroscopic wavefunctions becomes
&' (r,1) = U(r,r)e'a/mx (5.79)

We see that the same scalar function x changes the form of both A and 6.
Hence the supercurrent always has a precise value that can be experimentally
measured regardless of the gauge chosen. Now that we know our equations are
gauge invariant, we need not concern ourselves with the issue explicitly.

Equation 5.67 is the most general form for the supercurrent in an isotropic
superconductor since it includes the possibility that the local superelectron den-
sity is constant in neither space nor time. In fact, if the assumed form of ¥ is
substituted into Equation 5.65, the imaginary portion of the result yields

0 J

V- Js = - gf (q*n*) = 5!175 (5-80)
which is nothing more than conservation of charge. It is consistent with the
free superelectron fluid model, however, to assume the local density »n* is
constant. This approximation is true in many practical situations where the local
fluctuations in density for a superelectron fluid in equilibrium are on length and
time scales that are too small to be of engineering interest. We will normally
use the MQM under this limiting case.

To demonstrate that the MQM is consistent with the conclusions reached
using the classical model, it is necessary and sufficient to show that both the
first and second London equations are direct consequences of the supercurrent
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equation in this limit of constant n*. We therefore reintroduce the isotropic
London coefficient A (Equation 2.132), into Equation 5.67:

AJ, = — (A(r,t) - ;;V()(r,t)) , (5.81)

By taking the curl of this expression, we find
Vx(AJ)=-VxA=-B, (5.82)

and the second London equation (Equation 3.6), is immediately recovered.

The calculation to obtain the first London equation is a bit more involved.
We first take the partial derivative with respect to time of Equation 5.81. Rear-
ranging terms yields

d JdA & of

Of course, the problem is we have not found an expression for the time de-
pendence of the phase of the macroscopic wavefunction yet. However, if we
remember our assumption that n* is constant in space and time, the real part
of the Schridingerlike equation (Equation 5.65) is

0 1,

This expression is known as the energy-phase relarionship. Substituting it into
Equation 5.83 yields

d | 1
N (AJ)=E — WV (iAJSZ) , (5.85)

where the relationship between the electric field and the potentials was previ-
ously established by Equation 5.44.

This expression is nearly the same as the first London equation described
in Section 2.5. There is an extra term in this expression, however, which we
can identify as proportional to the gradient of the kinetic energy of the super-
electrons. At first, we might guess that this extra term is a result of purely
quantum mechanical effects so that our previous classical derivation would not
produce it. If the term were a result of a quantum effect though, it would con-
tain Planck’s constant and we see that this is not the case. Therefore, we must
determine why Equation 5.85 is not consistent with our previous statement of
the first London equation, Equation 2.131.
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We consequently try to cast Equation 5.85 in a more familiar form. From
the vector identity

!

Cx(VxC):z

V(C-C) - (C V)C (5.86)

and the second London equation, Equation 5.85 can be written as

5
ot

(AJs) + n%q,, (J\ : V) (AJS) = K + ;l_*!q* (Jg X B) . (5.87)

We now appeal to the convective (or total) time derivative that we introduced
in Equation 5.16:

(AL = = (AT + (v V) (M) . (5.88)

Using the fact that J, = n*¢” v,, we then find that Equation 5.87 reduces to

o V T q*E -+ q*vs % B. (5.89)

Thus we find that from Lorentz’s law and the second London equation, we
obtain the nonlinear first London equation! As a result, Fquation 5.85 must be
the correct form of the expression that describes the phenomenon of zero dc
resistance in superconductors. That we needed the second London equation in
deriving the first London equation is an indication that the Meissner effect 1s a
bit more fundamental in the physics of superconductivity than the phenomenon
of zero dc resistance. Of course these remarks hold for the classical model of
superconductivity as well. In fact, had we not neglected the magnetic portion
of Lorentz’s law when deriving the first London equation in Section 2.5, there
would be no inconsistency now.

We are now faced with an embarrassing situation: are all our previous
results incorrect since we used an incomplete form of the first London equation?
Fortunately the answer is no. Our problem solving techniques have bypassed
any calculation where the neglected term would have been significant. However,
this good fortune does not imply that we may always neglect the nonlinear term
in the first London equation. On the contrary, occasionally it plays an important
role.

Nonetheless, let us now demonstrate why previously solved problems in
earlier chapters are consistent with the correct (nonlinear) form of the first
London equation. This is most easily done by separating the problems in three
categories: MQS, EQS, and those involving both magnetic and electric fields.

Recall that whenever we solved an MQS problem, the slab in a magnetic
field for example, we never even used the first London equation. The electric
fields were not of zeroth-order importance and they were found from Faraday’s
law after the magnetic fields and associated currents were calculated. Since we
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did not calculate corrections to the original supercurrent distributions, the first
London equation was not invoked and all the MQS examples were correctly
solved.

For EQS problems the issues are more subtle. In these cases, we did use
the first London equation and it is important to see why our linearized form did
not cause errors. Equation 5.85 reduces to Equation 2.131 when

Ly (AJﬁ)

E| >
n'q

(5.90)

If we assume that changes in spatial distributions occur over length scales ¢ this
statement implies

Al.
El > v 1711 . (5.91)

By a similar dimensional analysis for the second London equation, we find that

~ |B] . (5.92)

A
¢

As a result, the solutions to previous EQS problems are correct as long as
|E| > |vi| B] . (5.93)

This condition is not surprising; it is consistent with the assumption we made in
Section 2.5 to neglect the magnetic portion of Lorentz’s law when we derived
the first London equation.

Of course, Equation 5.93 is not always justified. If there is a significant
spatial variation in the motion of the superelectrons, a nontrivial magnetic field
can be created. This magnetic field can then successfully compete with the
applied electric field to alter the distribution of the supercurrent flow. In other
words, the only true EQS superconducting problems are those in which the
geometry does not vary too rapidly (as defined by Equation 5.91). As it happens,
the problems studied in previous sections where the electric field is dominant
are in this category.

Suppose, however, that borh magnetic and electric fields are important,
as in the cases of electromagnetics or energy analysis. It is fortuitous that
our previous analysis with the linearized form of the first London equation
still holds. There are two reasons for this. First, the spatial distribution of the
electric field inside a superconductor is usually determined by Faraday’s law
as was discussed in Section 4.2. Since Faraday’s law involves the curl of E,
we find that the added correction term in the nonlinear first London equation
(the gradient of a scalar function) will not affect our previous results! The
second reason that our previous results hold stems from the way in which we
examined Poynting’s theorem. Recall from Section 3.5 that we only examined
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energy distributions over finite volumes. In other words, we exclusively based
our interpretations on an integral rather than differential formulation. Because
of this viewpoint, Poynting’s theorem, as given by Equation 3.97, and all the
conclusions based on it are still correct.

Let us examine this second issue further. In expressing the first London
equation as we did in Chapter 2, we treated the supercurrent as a field quantity,
like E or B. Thus if we use our linearized expression (Equation 2.131), we
might think that the local power density associated with the supercurrent is

a (1, _»
E-J; = 7 (iAJS ) \ (5.94)
which is not true. The supercurrent is not a field as such, it is a flux of charged
matter. As a result, there is power associated with both its kinetic and field
momenta. This is merely another way of expressing the fact that the canonical
momentum of a charged particle, as given by Equation 5.48, is the quantity
that is conserved in physical processes. Using the full form of the first London
equation (Equation 5.85), we find

_d (1,3

E-Jy =+ (iAJS ) , (5.95)
which is the proper local power density. Of course, if we look at an integral
formulation of Poynting’s theorem, Equation 3.97, this difference is no longer
apparent.

Let us generalize the MQM to an anisotropic superconductor as promised
earlier. As we saw in Section 3.6, a matrix describing the mass of a superelec-
tron can be used to account for anisotropic superconductivity. Consequently, it
is not difficult to generalize the Schrédingerlike equation for the macroscopic
wavefunction:

T
LA (?v - q*A) m (?—V ~ q*A) V+qg'el  (5.96)

ot 2

as well as the definition of the macroscopic quantum current:
-1 h
J; = g" Re {‘I’* m* (l-. V - q*A) ‘I’} . (5.97)

Using the general form of the macroscopic wavefunction ¥ given in Equa-
tion 5.66, we arrive at an expression for the macroscopic quantum current in
an anisotropic superconductor:

J, = g*n*(r,)mr (AVO(r.1) — ¢*A(r.1)) | (5.98)
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which can also be written
KJS = - (A(r,t) o -;;Vf)(r,t)) . (5.99)

Moreover, under the assumption that n* is a constant everywhere, the first and
second London equations for the anisotropic case are readily obtained:
9 (A1) =E - v (LsrZs (5.100
3t ( ’5) - n*q* 2 s S . )
and

v x (KJS) ~ -B. (5.101)

Not surprisingly, the forms of these equations are quite similar to those for the
isotropic superconductor. Indeed, the mathematical details of the derivations
follow closely to those used in the isotropic case.

We have found that the MQM self-consistently unites both London equa-
tions into a unifying macroscopic quantum supercurrent. This check on the
self-consistency of our classical reasoning is only the beginning of the power
of the MQM. In Section 5.5 we use the MQM to analyze superconducting
phenomena that have no classical analog ar all.

Before finishing this section, however, let us briefly examine how quantum
mechanics affects our description of the normal electrons. For us, the primary
result of this description is that the Drude model developed in Section 2.5 still
gives the correct conductivity. The quantum mechanical description, however,
shows that each carrier in the normal electron gas has a background speed
associated with it. In other words, when no currents are applied or induced
in the material at zero temperature, each electron moves in random directions
with a Fermi velocity, vr. Notice that in spite of the fact that each electron is
moving at the same speed, there is no net motion of the electron gas under
these conditions because the direction of each carrier is random. Of course, the
carrier velocity we associate with currents is the ner speed of the electron gas.

The Fermi velocity provides a way to translate some of our limiting criteria
from a temporal viewpoint into a spatial one. For example, since the average
time between each scattering event is 7;,, the intrinsic average distance between
scattering events, known as the mean free path {,,, is

by = Ve . (5.102)

For instance, we found in Section 2.5 that the scattering time in copper is
approximately 7, = 2.4 x 10 7! seconds. Since the Fermi velocity is typically
on the order of 107 m/s, we therefore know that each conduction electron in
copper travels about 0.24 um between scattering events. Moreover, recall that
we could approximate the conductivity of a material to be nondispersive for
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frequencies satisfying wr,, < 1. Since the Fermi velocity is typically a tenth of
the speed of light, the temporal based criterion translates into the spatial based
criterion

104, < Ao, (5.103)

where A, is the electromagnetic wavelength in the material. In other words, if
the wavelength is so large as to encompass many scattering sites, the motion of
the electron is most affected by the scattering events rather than the changing
electromagnetic field. As a result, the overall conduction in the material will
not be sensitive to a change in frequency and it is valid to approximate the
conductivity as nondispersive.

Finally, the randomness of the direction of the normal electrons’ motion
is also refiected in their quantum mechanical description. The ensemble of the
normal electrons can also be described by a wavefunction; this wavefunction,
however, is not coherent in phase as is the macroscopic wavefunction of the
superelectrons. Therefore, no simple macroscopic wavefunction, analogous to
¥(r,t), is found for the normal state.

5.5 FLUX QUANTA

Thus far, we have demonstrated that the MQM is consistent with the constitutive
laws for superconductivity we previously deduced using classical reasoning. We
now would like to examine the quantum mechanical consequences of the model.
To simplify the discussion, we will assume that the superconducting media is
homogeneous, as is typically done when using the MQM. In addition, we will
assume that the superconducting material is isotropic. (Our argument, however,
will hold for anisotropic materials as well and can be obtained by replacing A
with A.)
We begin with the supercurrent equation written in terms of A:

AJy = — (A(r,t) - ggvmr,z)) . (5.104)

Suppose we integrate this expression about a closed contour C, From Stokes’s
theorem (Equation 2.35) we know

fA-dEx/(VxAdez/B-ds, (5.105)
c s S
where § is the surface defined by the contour C and B is the magnetic flux

density associated with the vector potential. Equation 5.104 can therefore be
written as

%(;\JS).dH/ads:ﬁ;fva.dl. (5.106)
Jc s 9 Jc
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Let us evaluate the integral on the right side of this expression. We know from
vector calculus that the integral of the gradient of a scalar function along the
path defined by points r, and n, is

Ty,
V6 - dl = B(ry.1) — O(ra,1) . (5.107)

Jr,

Thus it would seem when r, — r, such that a closed path is formed, this
integral is zero. In general this is not true, however, because the specific value
of the phase of ¥ is not well defined. Indeed, there exist an infinite number of
possible values of the phase since for integer values of n

U(r, 1) = Vn* e O+2m) (5.108)

all give the same value for ¥. Thus we find that although the macroscopic
wavefunction is always well defined, the phase of ¥,

G(r,1) = 0,(r,1) + 2mn, (5.109)

is not. The phase can only be specified to within modulo 27 of its principal
value ,, which has the restricted range —# to 7. Since 6, is a single-valued
function, we find that

T —1,

f Vo - dl = lim (8(ry,t) — 6(ry,t)) =27n. (5.110)
c
From this analysis, Equation 5.106 becomes

j{(AJS)-di + /B-den@o, (5.111)
C 5

where n has been replaced by —n with no loss of generality and $, represents
a flux quanrum defined as

27 h

$, = e
g g

(5.112)

|

By definition, the flux quantum is necessarily a positive quantity. Let us explore
the consequences of this expression.

Example 5§.5.1: Consider the closed contour shown in Figure 5.1a, where the
surface § defined by the contour is in a simply connected bulk superconducting
region. Recall that we evaluate the closed contour integrals in Equation 5.111 by
imagining a line integration between the two points r, and ry taken in the limit
where 1, — r,. Since Equation 5.111 holds for all contours, we can examine
the particular case when the size of the contour is shrunk to zero length. In
this case, both integrals vanish (assuming that there are no singularities in
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Figure 5.1 Possibilities for a closed contour within a superconaucung
medium: (a) The path is in a simply connected bulk
superconducting region. (b) The path is in a multiply
connected region.

the supercurrents or flux densities), and we find that n = 0 in the simply con-
nected superconducting region. This 1s expected because the n = 0 condition
immediately yields the integral form of the second London equation which is
the constitutive relation for simply connected regions.

Example 5.5.2: The situation is very different if the closed path is in a multiply
connected region as illustrated in Figure 5.1b. Notice that the surface S now
covers both superconducting and normal regions. Thus when we close the line
integral by applying the limit ry, — r,, we have built some “memory” into the
path: we specifically know that the nonsuperconducting region was enclosed. In
other words, the phases at the points r, and r;, are now distinct. Consequently,
although the principal value of the two phases is necessarily the same, the
difference between the two phases is 27n.

The left-hand side of Equation 5.111 is known as a fluxoid and hence, this
expression is a statement of fluxoid quantization. Notice that any externally ap-
plied flux, generated by either fields or currents, is not necessarily quantized;
the flux created by any induced supercurrents must also be included in the cal-
culation. That the total amount of flux passing through a multiply connected
superconductor cannot be arbitrary but instead a discrete number of funda-
mental flux quanta is totally beyond the bounds of classical theory; indeed the
issue never came up when we examined the multiply connected superconducting
cylinder classically in Section 3.2.

Let us now reexamine Example 3.2.3 to see how the result differs when we
use the MQM. Recall that the problem consisted of finding the field distribution
around a hollow superconducting cylinder with a thick wall. By “thick,” we
mean that the wall thickness is much greater than a penetration depth A and
so the bulk approximation is valid. Clearly, the analysis will not change when
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ve apply the external field after the superconductor has been cooled below the
rritical temperature: there is never any flux that threads the cylinder under these
-onditions.

The problem is more interesting for the case when the external field is
ipplied before the cylinder undergoes the superconducting transition. As previ-
wisly discussed, when the cylinder becomes superconducting, a current flows
m the outer surface to expel the applied B from the bulk material. In addition,
inother current flows in the opposite direction on the inner surface to maintain
‘he applied field in the free space region as required by Ampere’s law. So far,
‘hese general ideas hold for both the classical model and the MQM.

The differences occur when we examine the details of the actual trapped
iux. In the classical case, the currents flowing on the inner surface are con-
trained only by Ampere’s law. In fact, when the applied field is removed, the
nly affect of the superconducting material is to support these currents without
sny dissipation. Hence, classically we could trap an arbitrary amount of flux
.n the cylinder by simply varying the intensity of the initial applied field.

This is not the case when the MQM is used to solve the problem. In ad-
ition to Ampere’s law, the induced supercurrents must also satisfy the fluxoid
auantization condition represented by Equation 5.111. As illustrated in Fig-
are 5.2, if we choose a closed contour deep within the thick wall, J; =0, the
MOM reveals that

/ B . ds=nd,. (5.113)
§
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Detail showing the fine distribution of the induced
-upercurrent in a hollow superconducting cylinder
vith a thick wall.
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In other words, if we were to remove the applied field, the total flux trapped
in the cylinder, which includes contributions from the flux density penetrating
the superconductor as well as that found in the free space region, is always a
discrete number of quanta irrespective of the initial value of the applied field.
Thus the MQM predicts that the trapped flux is quantized under such conditions.

We can therefore test the validity of the MQM by trying to experimentally
measure this flux quantization. In 1961, two sets of researchers, B. S. Deaver
and W. M. Fairbank in the United States and R. Doll and M. Nibauer in Ger-
many, in fact performed the experiment we have just outlined. In these exper-
iments, the “hollow cylinder” was made by coating a nonsuperconducting thin
filament with a superconducting layer; the former pair of researchers electro-
plated tin on copper wire while the latter evaporated lead onto a gquartz fiber.
The reason for using a small cylinder cross section is clear if we look at the
magnitude of ¥, as defined by Equation 5.112. Since we expect the charge
of the superelectron to be that of the order of a normal electron, we find
®, ~ 1 x 1013 T-m?; very small indeed! To observe discrete flux quanta, it is
easier to limit the area of the loop rather than to try to produce extremely tiny
flux densities.

Once the applied field is removed, the flux trapped inside the loop may
be measured in a variety of ways: Deaver and Fairbank chose to vibrate the
cylinder rapidly in the axial direction and measure the resulting rf signal via a
pair of coils while Doll and Nabauer suspended their sample orthogonal to the
cylinder’s axis and observed the torsion created when the trapped flux interacted
with another external field. The results of both experiments were essentially
identical and convincing: although the samples were cooled in a number of
applied field strengths, the net flux trapped occurred only in quantized steps
(see Figure 5.3). Also, as one would expect from our formulation, the results
did not change when the direction of the applied field was reversed. The two sets
of researchers demonstrated experimentally the limitations of a purely classical
approach to superconductivity.

There are additional observations that can be made from the data. First,
the precise value of a single flux quantum can be obtained. The data indicates
that

h ~15 2
b, = e = 207 x 167° T-m*, (5.1149)
where e is the magnitude of the charge associated with an electron. If we
compare this result with our definition of ®, (Equation 5.112), we arrive at the
important conclusion

|g*] =2e. (5.115)

Here, then, is experimental evidence that the superelectron carries twice the
charge of a normal one. Historically, this result provided the first experi-
mental proof of the existence of Cooper pairs, which were crucial in the
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Figure 5.3 Flux trapped in hollow cylinder. (a) Experimental evidence of
flux quanta measured by Deaver and Fairbank. The results
from Doll and Nibauer are essentially identical. (b) Idealized
form of the data. Source: B. S. Deaver and W. M. Fairbank,

“Experimental Evidence for Quantized Flux in Super-
conducting Cylinders,” Physical Review Letters, Vol. 7, 1961.

microscopic model of superconductivity proposed by John Bardeen, Leon
Cooper, and Robert Schrieffer in 1957.

In addition to the quantized phenomenon, Deaver and Fairbank noted a pat-
tern in their data. They found that the experimental evidence suggests the mini-
mum applied field to trap n flux quanta in the cylinder is 2n — | times greater
than the minimum field to trap a single quantum unit. Hence, two, three, and
four flux quanta can be trapped when the applied flux is respectively three, five,
and seven times the minimum required to obtain the original flux quantum.
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This observation has a consistent interpretation under the MQM. From
fluxoid quantization, we know that the total flux threading the cylinder, Ag 1,
is quantized:

Adiot = 1P = Apapp + AAg, (5.116)

where Ag app 18 the trapped flux that would be obtained from a classical analysis
of the problem and A )y is the additional flux needed to maintain the quantized
effect. Since our cylinder has thick walls, we can appeal to the bulk approxi-
mation and model the system in lumped form. As a result, the net inductance
of the loop is L, and so the additional persistent current needed to maintain
quantization, Af, is

Ai — A/\d) _ H‘I)o - A(blapp )

I I (5.117)

A plot of Equation 5.117 (shown in Figure 5.4), however, shows that there are
a seemingly infinite number of possible Ai for a given Ag,pp that will satisfy
the MQM. How does the cylinder “decide” the number of &, to trap?

The answer can be found by examining the energy of the system. As previ-
ously stated, when the cylinder is cooled below the superconducting transition
temperature, currents flow on both the inner and outer surfaces to maintain the
proper flux distribution. However, the superconducting cylinder responds in a
manner that is consistent not only with the MQM but also with the principle
that the system will equilibrate to its lowest energy state. Because there is an
energy associated with any circulating current, the cylinder will equilibrate as

Figure 5.4 The additional supercurrent induced to maintain
fluxoid quantization has many possible values for a given
applied flux. The system chooses the lowest current
necessary, however, and so actually Ai only falls within
the range indicated.
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it is cooled below 7. by minimizing the extra current needed to produce an
integral number of flux quanta. The small extra current induced for quantiza-
tion will either strengthen the amount of flux linked by the loop if Ag app is not
strong enough, or, by flowing in the opposite direction, repel a small portion of
the applied flux if it is too great. As is illustrated in Figure 5.4, the maximum
magnitude of the additional current is therefore

b

Al = 5. (5.118)

Physically, this maximum is reached when the applied flux differs from an
integral number of quanta by ®,/2. The same magnitude of current induced in
the cylinder can produce a half-flux quantum to either increase or decrease the
net flux quanta trapped to be integral.

If we now return to Equation 5.117, we see that the minimum Ag 4, re-
quired to produce n®, occurs when the contribution of A/ is greatest and flows
in a direction to increase the net flux. Replacing A/ by its maximum value
(Equation 5.118) shows that this minimum applied flux has a value

2,

= (2n — 1) 3

A app | min (5.119)
and we recover the 2n — | pattern observed by Deaver and Fairbank. Physi-
cally, we see that this pattern allows the superconductor to supply the minimum
amount of energy (in terms of AJ) while still maintaining fluxoid quantization.

We have thus demonstrated how the MQM not only recovers all our pre-
vious results obtained by applying the London equations, but also is consistent
with the quantized nature of superconductivity that is observed experimentally.
This is just the beginning. In Chapter 6, we shall see how the MQM allows
us to model those properties of a superconductor that would be difficult, if not

impossible, to account for in classical terms.

5.6 SUMMARY

In this chapter, we extended our concepts of superconductivity from a classical
theory to a quantum one. In quantum mechanics, the wave-particle duality of
nature is explicit and it is therefore possible to encounter such nonclassical
ideas as matter waves or “particles” of light (photons). As a direct consequence
of this duality, Schrodinger’s equation for a single quantum particle in a scalar
potential (Equation 5.27) describes the dynamical evolution of a probability
amplitude ?(r,?}. The physical interpretation of this function is that the square
of its magnitude is the probability that the particle will be at a specific place r
at a certain time ¢. To describe the motion of this probability distribution in
space-time, we found it intuitively appealing to think in terms of a probability
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current. Moreover, we were able to extend these concepts when the applied
potentials were not conservative as in the case of an electromagnetic field,

Because we envision superconductivity as a coherent phenomenon between
all the superelectrons, however, it is convenient to describe the entire ensemble
of carriers with a single macroscopic wavefunction

U(r,t) = /n*(r,1) "0

As a result, the form of the equation governing the entire ensemble subjected
to an electromagnetic field is similar to Schrodinger’s equation for a single
particle:

L O L (& \ : Ny
thb—!lll(r,t) = o (?V —q A(r,r)) U(r,1) + g o(r,1) ¥(r,1).

That we may assign a single wavefunction for the entire motion of the super-
electrons is the fundamental hypothesis behind the macroscopic quantum model
of superconductivity (MQM).

The MQM is relatively easy to use since many insights gained from the
single particle wavefunction translate naturally into equivalent statements in-
volving the ensemble wavefunction. For example, since ¥ describes the entire
collection of superelectrons, the square of its magnitude is now the probability
of finding all the carriers at a specific place at a specific time. However, this is
just another way of describing the local density of the superelectrons in space
and time, n*(r,t). As shown above, we self-consistently reflect this physics in
the expression of W itself. Moreover, it is often convenient to model the local
density as constant in space and time. In these instances, the dependence of the
macroscopic wavefunction on r and ¢ is contained entirely within the phase 8.

More importantly, the MQM provides an extension of the concept of proba-
bility currents. Since ¥ describes many particles, the flow of probability for the
entire ensemble is equivalent to the flow of the macroscopic supercurrent, J,
as given in Equation 5.67 for the case of an isotropic superconductor:

Js = g'n*(r,1) (%V@(r,t) - %* A(r,t)) \

or equivalently,

AT, = — (A(r,t) - 5;V9(r,t)> .

This relation, the supercurrent equation, is of primary importance in the MQM
and, of course, it can be extended to describe anisotropic media as well. Its
time derivative yields the first London equation

2 S T
gt (M) =E = 155V (EAJS )
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that self-consistently includes the effects of the magnetic field created by the
motion of the carriers. The curl of the supercurrent equation returns the second
London equation, included here for completeness:

V x (AJy) = -B.

Finally, when the supercurrent equation is integrated around a path in a multiply
connected region, we obtain

%(AJS)ndi + [B-ds:nda,,
JC

« S

which is a statement of fluxoid quantization. By measuring the value of the
flux quantum @,, the concept that the superelectron is in reality a Cooper pair
is experimentally confirmed. Once again, it is emphasized that extending this
discussion to anisotropic materials is not difficult. Indeed, the previous four
relations can be used for anisotropic superconductors if A is replaced by A.

References for Chapter 5

As noted in Section 5.1, the way in which quantum mechanics is developed in this
chapter is for the sole purpose of motivating the macroscopic quantum model of super-
conductivity. Consequently, it may appear that much of quantum mechanics is based on
heuristic arguments. In fact, this is far from the case, but to explore the subject rig-
orously requires a deeper understanding of classical mechanics. There is a formal way
of obtaining Newtonian mechanics through the principle of least action. Briefly stated,
this means that a classical object moves along a trajectory to minimize a certain abstract
quantity called the “action.” The problem of solving Newton's law therefore reduces to
finding this path of least action using a branch of mathematics known as variational
calculus. An excellent, short account of the principle of least action and variational cal-
culus is contained in Chapter 19 of Volume 11 of The Feynman Lectures on Physics by
R. P. Feynman, R, B. Leighton, and M. Sands (Addison-Wesley, 1964). Although brief,
the chapter contains nearly all the essential physical ideas behind this formalism of clas-
sical mechanics. A more detailed description of this material, as well as its philosophical
implications in both classical and quantum mechanics, can be found in Variational Prin-
ciples in Dynamics and Quantum Theory written by W, Yourgrau and S. Mandelstam
(Dover, 1979). The rigorous details of canonical momenta and generalized potentials
that we have omitted are described in a very readable manner in this book.

The formalism of quantum mechanics is, in fact, directly based on this formal way
of doing classical mechanics. Again, we have obtained the basic ideas of this approach
without much rigor. To become truly proficient in the ideas of quantum mechanics
requires a more detailed study of the material. In Volume 1 of The Feynman Lectures
on Physics, an elementary, but appealing, introduction to quantum phenomena is given:
Chapter 37 covers the notions of wave-particle duality and probability amplitudes, while
Chapter 38 considers some of the elementary implications of the Einstein-de Broglie
relations. These accounts are particularly helpful since they concentrate on the ideas
rather than the mathematics involved in a quantum mechanical description of nature.
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To actually solve quantum problems, however, one would like a more mathemat-
ically oriented text. There are many books available on quantum mechanics, but three
in particular are especially useful when approaching the subject for the first time. Prin-
ciples of Quantum Mechanics by R. Shankar (Plenum, 1980) provides a nice blend of
physical concepts with mathematics. In particular, all the ideas behind canonical mo-
menta, Schrddinger’s equation, probability currents, and the like, are given a reasonable
treatment in Chapters 4 and 5. A second book, Quantum Mechanics written by C. Cohen-
Tannoudji, B. Diu, and F. Lalog¢ (Wiley, 1977), is well suited for a self-study of the
subject. The total size of the two volumes is immense but this is because nearly all of the
mathematics is shown in great detail. Moreover, the text is highly modular and need not
be read entirely in sequence. Finally, Introductory Quantum Mechanics by R, L. Liboff
(Holden-Day, 1980) is a more concise text that approaches the subject from a traditional
point of view. All these books contain enough worked examples and problems to help
the reader practice using the concepts of quantum mechanics.

With regards to the MQM, Section E of Volume I of F. London’s book, Superfluids
(Dover, 1961), contains a lucid discussion of this approach by the inventor himself.
Moreover, this section is of historical interest, as London predicts fluxoid quantization.
It is interesting to note that since he did not anticipate the existence of Cooper pairs, his
predicted value of @, is too large by a factor of two. The Feynman Lectures on Physics
(Volume III, Chapter 21) also contains a description of the MQM. Finally, the first
experimental measurements of the flux quantum are described in the two papers discussed
in Section 5.5. The complete references are: (a) B. S. Deaver and W. M. Fairbank,
“Experimental Evidence for Quantized Flux in Superconducting Cylinders,” Physical
Review Letters 7, 43 (1961); and (b) R. Doll and M. Nabauer, “Experimental Proof
of Magnetic Flux Quantization in a Superconducting Ring,” Physical Review Letters 7,
51 (1961).

Problems

Probiem 5.1 (Wave-Particle Duality): Show that the de Broglie wavelength of a 10 keV
beam of electrons is indeed 0.12 A as claimed in Section 5.2. (Assume that the energy of
the clectrons is purely kinetic.) What is the energy of a beam of photons with the same
wavelength? What is the de Broglie wavelength of a beam of thermally excited neutrons
at 7 = 300K? (Recall that the thermal energy of a particle is given by £ = %kBT,
where kg, is Boltzmann constant.) The rest mass of a neutron, M,, is approximately
1.7 x 1027 kg. Comment on why thermally excited neutrons are useful for probing the
structure of crystals.

Problem 5.2 (Time Independent Schrodinger Equation): Assume that the wavefunc-
tion of a quantum particle can be written in the variable separable form

P(r,t) = )T (1),
where 7 is a function of time only.

a. Show that

T(I) x err'(&;fﬁ}f
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(where &, is the energy of the particle) and so the wavefunction becomes
P(r,1) = (r)e (G

b. Show that when the wavefunction has the form given in part (a), it satisfies the time
independent Schridinger equation:

2

£ Br) = — %'; V2H(r) + Vir) plr).

When the quantum particle has a definite energy &, it will satisfy this relation.

Problem 5.3 (Particle in a Box): Consider the situation where a particle of mass m
has its motion constrained by a “box.” In other words, the particle can only move in the
region from x = 0 to x = a. The particle is not subjected to any other potentials or
constraints. As a result, the particle neither loses energy to nor receives energy from
the walls of the box when it bounces off them.

a. What is the possible time independent values of the particle’s energy under classical
mechanics?

b.  What is the probability of finding the particle at the point x” (where 0 < x’ < a)
under classical mechanics? Recall that the probability of a continuous variable, like
x, implies that the particle lies in the interval x + dx.

c. Solve part (a) under quantum mechanics. (Hint: Review Problem 5.2 for a statement
of the time independent Schrddinger equation.)

d.  Solve part (b) under guantum mechanics.

e. Discuss the limiting conditions for the quantum mechanical problem to appear
classical.

Problem 5.4 (Tunneling Through a Barrier): Consider the time independent potential
energy profile shown in Figure P5.1. Such a barrier is characteristic of an insulator

Region l: x £ ~-a Energy

Regionll: -a £x<a \

Region Ill: @ < x
1%

¢

Incident Beam
of Energy £, Transmitted Beam

—_——
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- —— e

» X

~aq a

Nt

Energy Barrier

Figure P5.1 A Potential Barrier for the Incident Particles
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sandwiched between two metallic conductors. Suppose a beam of electrons (a current)
is incident on the barrier from the left. The energy of the beam is &, where &, < V,.

a. Sketch the force associated with this potential. How does this force tend to push
particles that are incident on the barrier?

b. Treating the beam of electrons as a classical entity, find the ratio of the transmitted
current to the incident current. (The transmitted current is that part of the beam
that passes through the barrier.)

The answer obtained in part (b) is not observed experimentally, The reason is that the
incident current beam is a quantum mechanical entity. We will assume that the energy
of the beam of electrons is a constant. In other words, the particles will have a definite
energy &, whether they are in regions I, II, or HI. Let us therefore solve this problem
using the time independent Schrodinger equation (review Problem 5.2).

¢.  Assume that the wavefunction of the incident particles is of the form

o~
! !,
— '

Wip = ¥

ilky-r —{E/hir
" fiy I

Since the quantum particles can “bounce” off the potential barrier and be reflected,
the total wavefunction in region I is

Py = gin e Ry v {Eofh)0 + Xe »»»»» i Eki"'"f'(fa/f‘)f]‘v
where A is the complex constant associated with the reflected wavefunction and will
be determined by the boundary conditions. Write expressions for the wavefunctions
in the other two regions, ¥ and ¥y. Find ki, Ky, and Ky in terms of &, and V.
Leave the amplitudes of the waves as constants to be determined by the bound-
ary conditions. Discuss the wavefunction in region II (the region of the potential)
by comparing it to evanescent waves in electromagnetism. (Hint: Remember that
E < V)

d. In quantum mechanics, it is assumed that the wavefunction is continuous every-
where. What boundary condition does this imply across an interface? (Use the
standard notation that the interface separates regions 1 and 2.)

e. We can use the boundary condition from part (d) to deduce a second boundary
condition on the wavefunction. Assuming that the external potential across the
interface changes no more rapidly than a step (as is often the case), integrate the
one-dimensional Schrédinger’s equation to show that

81{{’1 _ (3'1,/)2

o  Ox
across the interface.

f. Use the boundary conditions found in parts (d) and (¢) to solve for the complex
constants obtained in part (c).

g. Find the ratio of the transmitted current to the incident current. (Do not confuse
the incident current with the fotal current in region 1, which includes both incident
and reflected parts.) How does the quantum mechanical result differ from the
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classical one obtained in part (b)? (The quantum mechanical particles are said to
have runneled through the energy barrier.)

Problem 5.5: Prove Equation 5.60.

Problem 5.6: Starting with the second London equation and Lorentz’s law, obtain the
nonlinear first London equation. Notice that it is not necessary to use quantum mechanics
to obtain this result.

Problem 5.7: In this problem, assume that the local density of the superfluid »™(r.¢) is
not a constant in either space or time. Show that the imaginary part of the Schrodingerlike
equation (Equation 5.65) is

Interpret this result physically. Multiply both sides of this relation by ¢* and physically
interpret the result. What is the constraint on v, when n* is a constant in both space and
time?

Problem 5.8: Prove the energy-phase relationship (Equation 5.84) under the condition
that the superelectron fluid density is constant in space and time.

Problem 5.9: The Bohr-Sommerfeld rule of quantization requires that

%p-dlmnh.
g

where p is the canonical momentum
p=mv + gA.

n is an integer, and A is Planck’s constant.

a. Show that applying this quantization rule to the superelectron fluid immediately
yields the statement of fluxoid quantization (Equation 5.111).

b. Show that for the superfluid

d 1 ny
d_‘: =V (im*(\’s . vs)+q (p) .

where ¢ is the scalar potential needed to describe the electric field. (Hint: Use
the nonlinear first London equation.) Show that this expression implies that the
quantization does not change in time:

i(ni)(,) =90.

Problem 5.10 (The London Gauge): As is well known from vector caiculus, a vector
is not completely specified until both its divergence and curl are known. As a result,
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although the curl of the vector potential is defined (V x A = B}, we are still free to

specify its divergence. As with MQS problems, it is sometimes convenient to define
V-AL =0,

which is known as the London gauge. (We will use the subscript “L” to remind us that
we are specifying the gauge.) In addition, the London gauge is defined so that

AL n=0
where n is the normal to the superconducting surface.
a. Suppose we pick a vector potential, A} , which satisfies the bulk condition
V-A =0

but not the boundary condition. As discussed in Section 5.4, we can transform AL
into Ap via the relation

Find the appropriate bulk and boundary conditions on the scalar function x.

b.  As shown in part (a), we can always adjust the vector potential to become A; . As
a result, show that the phase in the London gauge satisfies the condition

VZQL = 0

in the bulk, and

Vo - n= (‘%AJS) ‘n

at the boundary. (Assume that n* is constant in space and time.) Show that V@ 1s
completely specified within a simply connected region.

c. Argue that if the superconductor is isolated so that
Js-n=0
everywhere on the boundary, the result of the London gauge is
Al = —AL.

Notice that this expression is only valid in simply connected regions as discussed in
part (b}.



